请你为 最不经常使用(LFU)缓存算法设计并实现数据结构。
实现 LFUCache
类:
LFUCache(int capacity)
- 用数据结构的容量 capacity
初始化对象int get(int key)
- 如果键 key
存在于缓存中,则获取键的值,否则返回 1
。void put(int key, int value)
- 如果键 key
已存在,则变更其值;如果键不存在,请插入键值对。当缓存达到其容量 capacity
时,则应该在插入新项之前,移除最不经常使用的项。在此问题中,当存在平局(即两个或更多个键具有相同使用频率)时,应该去除 最近最久未使用 的键。为了确定最不常使用的键,可以为缓存中的每个键维护一个 使用计数器 。使用计数最小的键是最久未使用的键。
当一个键首次插入到缓存中时,它的使用计数器被设置为 1
(由于 put 操作)。对缓存中的键执行 get
或 put
操作,使用计数器的值将会递增。
函数 get
和 put
必须以 O(1)
的平均时间复杂度运行。
示例:
输入:
["LFUCache", "put", "put", "get", "put", "get", "get", "put", "get", "get", "get"]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [3], [4, 4], [1], [3], [4]]
输出:
[null, null, null, 1, null, -1, 3, null, -1, 3, 4]
解释:
// cnt(x) = 键 x 的使用计数
// cache=[] 将显示最后一次使用的顺序(最左边的元素是最近的)
LFUCache lfu = new LFUCache(2);
lfu.put(1, 1); // cache=[1,_], cnt(1)=1
lfu.put(2, 2); // cache=[2,1], cnt(2)=1, cnt(1)=1
lfu.get(1); // 返回 1
// cache=[1,2], cnt(2)=1, cnt(1)=2
lfu.put(3, 3); // 去除键 2 ,因为 cnt(2)=1 ,使用计数最小
// cache=[3,1], cnt(3)=1, cnt(1)=2
lfu.get(2); // 返回 -1(未找到)
lfu.get(3); // 返回 3
// cache=[3,1], cnt(3)=2, cnt(1)=2
lfu.put(4, 4); // 去除键 1 ,1 和 3 的 cnt 相同,但 1 最久未使用
// cache=[4,3], cnt(4)=1, cnt(3)=2
lfu.get(1); // 返回 -1(未找到)
lfu.get(3); // 返回 3
// cache=[3,4], cnt(4)=1, cnt(3)=3
lfu.get(4); // 返回 4
// cache=[3,4], cnt(4)=2,
class LFUCache {
HashMap<Integer, Integer> keyToVal;
HashMap<Integer, Integer> keyToFreq;
HashMap<Integer, LinkedHashSet<Integer>> freqToKeys;
int minFreq = 0;
int cap = 0;
public LFUCache(int capacity) {
keyToVal = new HashMap<>();
keyToFreq = new HashMap<>();
freqToKeys = new HashMap<>();
this.cap = capacity;
this.minFreq = 0;
}
public int get(int key) {
if(!keyToVal.containsKey(key)) return -1;
increaseFreq(key);
return keyToVal.get(key);
}
public void put(int key, int val) {
if(keyToFreq.containsKey(key)){
keyToVal.put(key,val);
increaseFreq(key);
return;
}
if(keyToVal.size() >= this.cap){
removeMinFreq();
}
keyToFreq.put(key, 1);
keyToVal.put(key, val);
freqToKeys.putIfAbsent(1, new LinkedHashSet<>());
freqToKeys.get(1).add(key);
this.minFreq = 1;
}
public void increaseFreq(int key){
int freq = keyToFreq.get(key);
keyToFreq.put(key, freq+1);
freqToKeys.get(freq).remove(key);
freqToKeys.putIfAbsent(freq + 1, new LinkedHashSet<>());
freqToKeys.get(freq + 1).add(key);
if(freqToKeys.get(freq).size() == 0){
freqToKeys.remove(freq);
if(freq == this.minFreq){
this.minFreq++;
}
}
}
public void removeMinFreq(){
LinkedHashSet<Integer> keyList = freqToKeys.get(this.minFreq);
int deleteKey = keyList.iterator().next();
keyList.remove(deleteKey);
keyToVal.remove(deleteKey);
keyToFreq.remove(deleteKey);
}
}
/**
* Your LFUCache object will be instantiated and called as such:
* LFUCache obj = new LFUCache(capacity);
* int param_1 = obj.get(key);
* obj.put(key,value);
*/